0 руб.
Оформить заказПод заказ (предоплата)
17 416 руб.
Под заказ (предоплата)
24 580 руб.
Под заказ (предоплата)
24 720 руб.
Под заказ (предоплата)
24 800 руб.
Под заказ (предоплата)
25 270 руб.
Под заказ (предоплата)
25 940 руб.
Под заказ (предоплата)
25 940 руб.
Под заказ (предоплата)
26 790 руб.
Под заказ (предоплата)
26 960 руб.
Под заказ (предоплата)
28 390 руб.
Под заказ (предоплата)
28 390 руб.
Под заказ (предоплата)
29 430 руб.
Под заказ (предоплата)
31 400 руб.
Под заказ (предоплата)
32 200 руб.
Под заказ (предоплата)
32 200 руб.
Под заказ (предоплата)
32 760 руб.
Под заказ (предоплата)
32 760 руб.
Под заказ (предоплата)
35 460 руб.
Под заказ (предоплата)
42 720 руб.
Под заказ (предоплата)
45 600 руб.
Под заказ (предоплата)
46 270 руб.
Под заказ (предоплата)
46 690 руб.
Под заказ (предоплата)
47 370 руб.
Под заказ (предоплата)
53 780 руб.
Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.
Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.
Виды преобразователей частоты
Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:
Электромашинные частотники.
Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.
Электронные преобразователи.
Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.
Непосредственные преобразователи частоты
Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.
Устройства такого типа включаются непосредственно в питающую сеть.
Плюсы непосредственных преобразователей частоты:
- Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
- Высоким к.п.д. за счет однократного преобразования частоты.
- Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
- Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.
Минусы непосредственных преобразователей частоты:
- Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
- Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
- Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.
Преобразователи частоты с промежуточным звеном постоянного тока.
Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.
Плюсы преобразователей с промежуточным звеном постоянного тока:
- Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
- Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
- Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
- Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
- Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.
Минусы преобразователей с промежуточным звеном постоянного тока:
- Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
- Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.
Устройство преобразователей с промежуточным звеном постоянного тока
Состоят такие преобразователи из нескольких основных блоков:
- Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
- Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
- Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
- Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
- Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.