0 руб.
Оформить заказПод заказ 3-5 дней (предоплата)
1 694 руб.
Под заказ 3-5 дней (предоплата)
2 041 руб.
Под заказ 3-5 дней (предоплата)
2 203 руб.
Под заказ 3-5 дней (предоплата)
2 203 руб.
Под заказ 3-5 дней (предоплата)
2 604 руб.
Под заказ 3-5 дней (предоплата)
2 654 руб.
Под заказ 3-5 дней (предоплата)
3 035 руб.
Под заказ 3-5 дней (предоплата)
3 517 руб.
Под заказ 3-5 дней (предоплата)
3 862 руб.
Под заказ 3-5 дней (предоплата)
4 573 руб.
Под заказ 3-5 дней (предоплата)
5 021 руб.
Под заказ 3-5 дней (предоплата)
6 546 руб.
Под заказ 3-5 дней (предоплата)
7 544 руб.
Под заказ 3-5 дней (предоплата)
7 978 руб.
Под заказ 3-5 дней (предоплата)
9 408 руб.
Под заказ 3-5 дней (предоплата)
9 808 руб.
Под заказ 3-5 дней (предоплата)
10 319 руб.
Под заказ 3-5 дней (предоплата)
10 372 руб.
Под заказ 3-5 дней (предоплата)
12 231 руб.
Под заказ 3-5 дней (предоплата)
13 415 руб.
Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.
Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.
Виды преобразователей частоты
Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:
Электромашинные частотники.
Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.
Электронные преобразователи.
Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.
Непосредственные преобразователи частоты
Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.
Устройства такого типа включаются непосредственно в питающую сеть.
Плюсы непосредственных преобразователей частоты:
- Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
- Высоким к.п.д. за счет однократного преобразования частоты.
- Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
- Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.
Минусы непосредственных преобразователей частоты:
- Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
- Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
- Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.
Преобразователи частоты с промежуточным звеном постоянного тока.
Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.
Плюсы преобразователей с промежуточным звеном постоянного тока:
- Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
- Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
- Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
- Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
- Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.
Минусы преобразователей с промежуточным звеном постоянного тока:
- Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
- Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.
Устройство преобразователей с промежуточным звеном постоянного тока
Состоят такие преобразователи из нескольких основных блоков:
- Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
- Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
- Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
- Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
- Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.